Post-hoc selection of dynamic causal models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post-hoc selection of dynamic causal models

Dynamic causal modelling (DCM) was originally proposed as a hypothesis driven procedure in which a small number of neurobiologically motivated models are compared. Model comparison in this context usually proceeds by individually fitting each model to data and then approximating the corresponding model evidence with a free energy bound. However, a recent trend has emerged for comparing very lar...

متن کامل

Post hoc Bayesian model selection

This note describes a Bayesian model selection or optimization procedure for post hoc inferences about reduced versions of a full model. The scheme provides the evidence (marginal likelihood) for any reduced model as a function of the posterior density over the parameters of the full model. It rests upon specifying models through priors on their parameters, under the assumption that the likelih...

متن کامل

Comparing dynamic causal models.

This article describes the use of Bayes factors for comparing dynamic causal models (DCMs). DCMs are used to make inferences about effective connectivity from functional magnetic resonance imaging (fMRI) data. These inferences, however, are contingent upon assumptions about model structure, that is, the connectivity pattern between the regions included in the model. Given the current lack of de...

متن کامل

Dynamic causal models of steady-state responses

In this paper, we describe a dynamic causal model (DCM) of steady-state responses in electrophysiological data that are summarised in terms of their cross-spectral density. These spectral data-features are generated by a biologically plausible, neural-mass model of coupled electromagnetic sources; where each source comprises three sub-populations. Under linearity and stationarity assumptions, t...

متن کامل

Comparing Families of Dynamic Causal Models

Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This "best model" approach is very useful but can become brittle if there are a large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Neuroscience Methods

سال: 2012

ISSN: 0165-0270

DOI: 10.1016/j.jneumeth.2012.04.013